Problems

Contents

2 Some Elementary Logic 2
3 The Real Number System 4
4 Set Theory 6
5 Vector Space Properties of \mathbb{R}^{n} 10
6 Metric Spaces 11
7 Sequences and Convergence 17
8 Cauchy Sequences 18
9 Sequences and Compactness 20
10 Limits of Functions 22
11 Continuity 23
12 Uniform Convergence of Functions 26
13 First Order Systems of Differential Equations 27
14 Fractals 31
15 Compactness 32
16 Connectedness 34
17 Differentiation of Real-valued Functions 35
18 Differentiation of Vector-valued Functions 36
19 Inverse Function Theorem 37

2 Some Elementary Logic

Problem 2.1

1. Show that $p \Rightarrow q, \neg q \Rightarrow \neg p, \neg p \vee q$ and $\neg(p \wedge \neg q)$ have the same meaning, by showing that they have the same truth tables.
2. Do the same for $p \vee q$ and $\neg(\neg p \wedge \neg q)$.
3. Do the same for $\neg(p \wedge q)$ and $(\neg p) \vee(\neg q)$.
4. Do the same for $p \Leftrightarrow q$ and $(p \Rightarrow q) \wedge(q \Rightarrow p)$.
5. Do the same for $\neg(p \Rightarrow q)$ and $p \wedge \neg q$.

Problem 2.2 Prove there is an infinite number of primes by assuming that there is a greatest prime p and deducing a contradiction. Set your proof out carefully.

Hint: Consider $q+1$ where q is the product of all primes less than or equal to p. You may assume that any integer greater than one is either prime or is divisible by a prime.

Problem 2.3 Express each of the following in terms of $\forall, \exists, \neg, \vee, \wedge, \Rightarrow$ and \Leftrightarrow, as appropriate. Do the same for a sentence equivalent to the negation (do not just put a \neg in front, you are supposed to find a more "natural" version of the negation). Finally, translate this version of the negation back into English.

1. If a real number is rational, so is its square.
2. No elephant can stand the sight of a mouse.

Problem 2.4 A triangular number is a number of the form $\frac{k(k+1)}{2}$ where k is a natural number. Use a proof by cases to show that every triangular number has remainder 0 or 1 when divided by $3 .{ }^{1}$ (Can you see why such a number is called triangular?)

Problem 2.5 1. Express the following definition in terms of $\forall, \exists, \neg, \vee$, \wedge, \Rightarrow and \Leftrightarrow, as appropriate.

Definition A function $f: A(\subset \mathbb{R}) \rightarrow \mathbb{R}$ is uniformly continuous if for every $\epsilon>0$ there exists $\delta>0$ such that $|f(x)-f(y)|<\epsilon$ whenever x and y are in A and $|x-y|<\delta$.

[^0]2. Express a "natural" version of what it means for a function to be not uniformly continuous:
(a) in a form analogous to the previous definition;
(b) in terms of $\forall, \exists, \neg, \vee, \wedge, \Rightarrow$ and \Leftrightarrow, as appropriate.
3. Give a simple example of a continuous but not uniformly continuous function in case $A=(0,1)$. Explain.

Problem 2.6 1. Express the following definition in terms of $\neg, \wedge, \vee, \Rightarrow$, $\Longleftrightarrow, \forall, \exists$ as appropriate.
Definition Suppose $f_{1}, f_{2}, \ldots, f_{n}, \ldots$ is a sequence of functions such that $f_{n}:[0,1] \rightarrow \mathbb{R}$ for all n. Suppose that $f:[0,1] \rightarrow \mathbb{R}$. Then the sequence $\left(f_{n}\right)_{n=1}^{\infty}$ converges to f uniformly if
for every $\epsilon>0$ there exists N such that $n \geq N$ implies $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $x \in[0,1]$.

Note that when the displayed expression is rewritten in symbols, the quantifier for x should precede $\left|f_{n}(x)-f(x)\right|<\epsilon$.
2. Suppose $f_{1}, f_{2}, \ldots, f_{n}, \ldots$ is a sequence of functions such that f_{n} : $[0,1] \rightarrow \mathbb{R}$ for all n. Suppose that $f:[0,1] \rightarrow \mathbb{R}$. We say the sequence $\left(f_{n}\right)_{n=1}^{\infty}$ converges to f pointwise if $f_{n}(x) \rightarrow f(x)$ for every $x \in[0,1]$.
Let $f(x)=0$ if $0 \leq x<1 / 2$ and $f(x)=1$ if $1 / 2 \leq x \leq 1$. Give an example of a sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ such that $\left(f_{n}\right)_{n=1}^{\infty}$ converges to f pointwise but not uniformly (see Section 12.1).
3. (a) Write out a definition of pointwise convergence analogous to that given for uniform convergence.
(b) Write out a definition analogous to your answer to (2). Note that the important point will be where the quantifier $\forall x$ is placed.

3 The Real Number System

Problem 3.1 Prove that if A and B are two sets of real numbers, and $C=\{a+b: a \in A, b \in B\}$, then $\sup C=\sup A+\sup B$.

Problem 3.2 Suppose that $\sup _{x \in[a, b]} f(x)$ and $\sup _{x \in[a, b]} g(x)$ both exist. ${ }^{2}$ Show ${ }^{3}$ that

$$
\sup _{x \in[a, b]}(f(x)+g(x)) \leq \sup _{x \in[a, b]} f(x)+\sup _{x \in[a, b]} g(x) .
$$

Give a counterexample to equality. ${ }^{4}$
Problem 3.3 Prove the following theorems from the axioms. Set your proofs out carefully, using only one axiom for each line of your argument. Explicitly indicate which axiom is being used for each step.
(a) Theorem Suppose a and b are real numbers and $a \neq 0$. Then there exists one, and only one, number x such that

$$
a x=b .
$$

Moreover, $x=b a^{-1}$.
(b) Theorem If a is a real number then

$$
a \cdot 0=0 .
$$

Problem 3.4 Prove that if A and B are two sets of strictly positive numbers that are bounded above and

$$
C=\{a / b: a \in A, b \in B\}
$$

then

$$
\sup C=\frac{\sup A}{\inf B} .
$$

You should realise that $\sup C$ may be $+\infty$.

Problem 3.5 From Problem 3.3 above there is a unique solution of the equation $a+x=b$, and also of the equation $a x=b$ if $a \neq 0$. In particular, given $a \in \mathbb{R}$ there is a unique $x \in \mathbb{R}$, which is denoted $-a$, such that $a+x=0$. Similarly for the multiplicative inverse.

In the following use only the axioms or previously proved results. Use at most one axiom per line of argument.

[^1][^2]1. Prove $-(-a)=a$.
2. Prove $(-1) x=-x$.
3. Prove $a(-b)=-(a b)=(-a) b$.

Problem 3.6 Suppose that $A \subset \mathbb{R}$ is bounded above. Let $\sup A=\alpha$.

1. A has a maximum element iff $\alpha \in A$.
2. If $\alpha \notin A$ then for any $\varepsilon>0$ there are infinitely many elements of A greater that $\alpha-\varepsilon$.

4 Set Theory

Problem 4.1 What is the cardinality of

$$
S=\{(x, y): x, y \text { are rational }\} ?
$$

Problem 4.2 Find a one-one map from the set $\mathcal{P}[a, b]$ (the set of all subsets of $[a, b]$) into the set $F[a, b]$ (the set of all real-valued functions defined on $[a, b])$. Deduce that the cardinality of $F[a, b]$ is \geq the cardinality of $\mathcal{P}[a, b]$, which as we saw in Theorem 4.10.1 is $>c$.

Problem 4.3 1. If A and B are disjoint denumerable sets, show ${ }^{5}$ by means of an explicit enumeration that $A \cup B$ is denumerable.
2. What if they are not necessarily disjoint?

Problem 4.4 Prove that if A is denumerable then the set of all finite subsets of A is denumerable. (HINT: First show that the set of all subsets of cardinality one is denumerable, similarly for the set of all subsets of cardinality two, etc.)

Problem 4.5 Prove that the set of all subsets of a denumerable set has cardinality c.

Problem 4.6 1. If A has cardinality c and $B \subset A$ has cardinality d, prove that $A \backslash B$ has cardinality c. (HINT: Write $A_{1}=A \backslash B$. Let B^{\prime} be a denumerable subset of A_{1}. Then $A=\left(A_{1} \backslash B^{\prime}\right) \cup\left(B \cup B^{\prime}\right)$ and $A_{1}=\left(A_{1} \backslash B^{\prime}\right) \cup B^{\prime}$. Now construct a one-one correspondence.)
2. Deduce that the set of irrationals is uncountable.

Problem 4.7 A real number is algebraic if it is the solution of an equation of the form $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0$ for some natural number n and integers $a_{0}, a_{1}, \ldots, a_{n}$. Note that any rational number is algebraic, and that $\sqrt{2}$ is algebraic. Prove that the set of algebraic numbers is denumerable.

Problem 4.8 1. Prove, by giving an enumeration, that the set of all integer multiples of 5 is denumerable.
2. Prove, by giving an enumeration, that if A is denumerable and B is finite and disjoint from A, then $A \cup B$ is denumerable.
3. What if A and B are not necessarily disjoint? Explain.
4. Prove that the set of all complex numbers of the form $a+b i$, where a and b are rational, is denumerable.

[^3]Problem 4.9 Suppose there is a function $f_{1}: A \rightarrow B$ which is one-one, and a function $f_{2}: A \rightarrow B$ which is onto. Prove that $\overline{\bar{A}}=\overline{\bar{B}}$.

Problem 4.10 1. Carefully prove that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ (see Proposition 4.1). The proof should be in two parts: first show that if $x \in A \cup(B \cap C)$ then $x \in(A \cup B) \cap(A \cup C)$, then show the converse. Your proof should essentially just rely on the definitions of \cap and \cup, and the meaning of the logical words and and or.
2. Carefully prove the two claims in (4.36).
3. Carefully prove the two claims in (4.34).
4. Give a simple counterexample to equality, instead of \subset, holding in the first claim of (4.34).

Problem 4.11 1. Suppose that the function $f:[0,1] \rightarrow \mathbb{R}$ is increasing, i.e. $x<y$ implies $f(x) \leq f(y)$.
(a) Prove that $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ both exist for all $a \in$ $[0,1]{ }^{6}$
(b) Prove that for each $\epsilon>0$ there exist only finitely many numbers a such that $\lim _{x \rightarrow a^{+}} f(x)-\lim _{x \rightarrow a^{+}} f(x)>\epsilon$.
(c) Deduce that the set of points at which f is discontinuous is countable.
2. Give a simple example of a function $f:[0,1] \rightarrow \mathbb{R}$ which is discontinuous everywhere.

Problem 4.12 1. Prove that $f\left[f^{-1}[A]\right] \subset A$.
2. Give a simple example to show " \subset " cannot be replaced by " $=$ ".
3. Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by

$$
f(x, y)=\left(\left(x^{2}+y^{2}\right)^{1 / 2}, x+y\right) .
$$

Let $A=\left\{(x, y):\left(x^{2}+y^{2}\right)^{1 / 2} \leq a\right\}$, where $a>0$ is a given real number. Find (i) $f[A]$, (ii) $f^{-1}[A]$.

Problem 4.13 Suppose $I_{n}=\left[a_{n}, b_{n}\right]$ is a sequence of intervals from \mathbb{R} such that $I_{1} \supset I_{2} \supset \cdots \supset I_{n} \supset \cdots$ and such that length $I_{n} \rightarrow 0$ as $n \rightarrow \infty$ (i.e. if $\epsilon>0$ then there is an N such that $b_{n}-a_{n}<\epsilon$ for all $\left.n \geq N\right)$.

1. Prove that there exists a unique $x \in \mathbb{R}$ such that $x \in I_{n}$ for every n. NOTE: First look at the next two parts.

[^4]2. Give an example to show that this is not true if \mathbb{R} is replaced by \mathbb{Q}.
3. Give an example to show that the result is not true if the I_{n} are of the form $\left(a_{n}, b_{n}\right)$.

Give a new proof that an interval $[a, b]$ (where $a<b$) is uncountable by beginning as follows:

Suppose (in order to obtain a contradiction) that $[a, b]$ is countable. Let $x_{1}, x_{2}, x_{3}, \ldots, x_{n}, \ldots$ be a sequence which enumerates $[a, b]$. Divide $[a, b]$ into 3 intervals $[a, a+(b-a) / 3],[a+(b-$ $a) / 3, a+2(b-a) / 3]$ and $[a+2(b-a) / 3, b]$. Then for at least one of these intervals, which we call I_{1}, we have $x_{1} \notin I_{1}$ (why do we need to divide $[a, b]$ into 3 , and not 2 , for this to be true?). Now divide I_{1} into 3 intervals

Problem 4.14 Use Proposition 4.8.4 and the fact $\mathbb{N} \times \mathbb{N}$ is countable to prove Theorem 4.9.1-3.

Problem 4.15 1. Prove that if A is infinite and B has cardinality d, then $\overline{A \cup B}=\bar{A}$. Hint: use the argument, but not the result, of Problem 4.6.
2. Hence deduce that the set of irrationals has cardinality c.

Problem 4.16 1. Let S be the set of all sequences of the form

$$
\left(a_{1}, a_{2}, a_{3}, \ldots, a_{i}, \ldots\right)
$$

where each $a_{i}=0$ or 1 . Show that S has cardinality c. Hint: use binary expansions of real numbers in the interval $[0,1]$.
2. Let S_{0} be the set of all finite sequences of the form

$$
\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)
$$

where n can be any (positive) integer and where each $a_{i}=0$ or 1 . Show that S_{0} has cardinality d (thus S_{0} is the set of all finite sequences whose terms are 0 or 1).
3. Deduce that the set of all subsets of \mathbb{N} has cardinality c and that the set of all finite subsets of \mathbb{N} has cardinality d.

Problem 4.17 Suppose $\epsilon>0$ (think of ϵ as small).

1. Show there exists a set $A \subset[0,1]$ of the form

$$
A=\bigcup_{i=1}^{\infty}\left(a_{i}, b_{i}\right)
$$

where the intervals $\left(a_{i}, b_{i}\right)$ are mutually disjoint ${ }^{7}$, and such that

[^5](a) $\mathbb{Q} \cap(0,1) \subset A$,
(b) $\sum_{i=1}^{\infty}\left(b_{i}-a_{i}\right) \leq \epsilon$.
2. Show that if $x \in A^{c}$ then every open interval containing x^{8} meets A^{9}.
3. Show A^{c} has cardinality c.

[^6]${ }^{9}$ That is, has non-empty intersection with A.

5 Vector Space Properties of \mathbb{R}^{n}

Problem 5.1 Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be an orthonormal basis for \mathbb{R}^{n}, and let

$$
C=\left\{\mathbf{x}: \mathbf{x}=\sum_{i=1, n}^{n} t^{i} \mathbf{v} v_{i}, 0 \leq t^{i} \leq 1 \text { for } i=1, \ldots, n\right\}
$$

The set C is called an n-cube. If each $t^{i}=0$ or $1, \mathbf{x}$ is called a vertex. What are the various possible distances between the vertices of C ? HINT: First think about the cases $n=1,2,3$.

Problem 5.2 Let V be a subspace of \mathbb{R}^{n} of dimension k. Consider the orthogonal complement

$$
V^{\perp}=\{\mathbf{y}: \mathbf{y} \cdot \mathbf{x}=0 \forall \mathbf{x} \in V\}
$$

(a) Find an orthonormal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ for \mathbb{R}^{n}, such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is an orthonormal basis for V and $\left\{\mathbf{v}_{\mathbf{k}+\mathbf{1}}, \ldots, \mathbf{v}_{n}\right\}$ is an orthonormal basis for V^{\perp}. Hint: Apply the Gram-Schmidt process to a basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ for \mathbb{R}^{n} where $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$ is a basis for V.
(b) Show that each $\mathrm{x} \in \mathbb{R}^{n}$ can be written in one and only one way as $\mathbf{x}=\mathbf{y}+\mathbf{z}$ where $\mathbf{y} \in V$ and $\mathbf{z} \in V^{\perp}$.

Problem 5.3 1. Prove the following identities hold in any inner product space:

$$
\begin{align*}
(x, y) & =\frac{1}{4}\left[\|x+y\|^{2}-\|x-y\|^{2}\right] \\
(x, y) & =\frac{1}{2}\left[\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}\right] \tag{1}\\
\|x+y\|^{2}+\|x-y\|^{2} & =2\left[\|x\|^{2}+\|y\|^{2}\right] \tag{2}
\end{align*}
$$

2. **Prove that if (2) is true in a normed space, then (1) defines an inner product on the space.
Thus a normed space has its norm induced from an inner product iff (2) is true (and the inner product is then determined from the norm via (1)).

6 Metric Spaces

Problem 6.1 Find $\operatorname{int} A, \partial A$ and \bar{A} where A is

1. $\left\{\mathrm{x}: 0<\left|\mathrm{x}-\mathrm{x}_{0}\right| \leq \delta\right\}, \delta>0$.
2. $\{(r \cos \theta, r \sin \theta): 0<r<1,0<\theta<2 \pi\}$.
3. $\{(x, y)$: at least one of x or y is irrational $\}$.

Problem 6.2 In the previous question, which sets are open and which are closed?

Problem 6.3 Let c be a real number and suppose $\mathbf{z} \in \mathbb{R}^{n}$. Show that the half space $\{\mathbf{x}: \mathbf{z} \cdot \mathbf{x}<c\}$ is an open set. HINT: $|\mathbf{z} \cdot \mathbf{y}-\mathbf{z} \cdot \mathbf{x}| \leq|\mathbf{z}||\mathbf{y}-\mathbf{x}|$.

Problem 6.4 Show that

$$
\partial A=\partial\left(A^{c}\right) \text { and } \bar{A}=\overline{(\bar{A})}
$$

Problem 6.5 Give a simple example to show that the following is not necessarily true:

$$
\operatorname{int}(\bar{A})=\operatorname{int} A
$$

Problem 6.6 Let A be open and B be closed. Prove that $A \backslash B$ is open and that $B \backslash A$ is closed.

Problem 6.7 Prove that

$$
\operatorname{int}(A \cap B)=(\operatorname{int} A) \cap(\operatorname{int} B)
$$

Problem 6.8 Prove that

$$
\operatorname{int}(A \cup B) \supset(\operatorname{int} A) \cup(\operatorname{int} B)
$$

Problem 6.9 Let (X, d) be a metric space. define

$$
\bar{d}(x, y)=\frac{d(x, y)}{1+d(x, y)}
$$

Prove that \bar{d} is a metric. Also prove that the metrics d and \bar{d} have the same open sets.

Note: The metric \bar{d} has the occasional advantage that it is bounded, since $\bar{d}(x, y)<1$ for all x, y.

Problem 6.10 Suppose $1 \leq s \leq n-1$. Regard \mathbb{R}^{n} as the product $\mathbb{R}^{s} \times \mathbb{R}^{n-s}$ and write $\mathbf{x}=\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right)$, where $\mathbf{x}^{\prime}=\left(x^{1}, \ldots, x^{s}\right), \mathbf{x}^{\prime \prime}=\left(x^{s+1}, \ldots, x^{n}\right)$. Let $\pi(\mathbf{x})=\mathbf{x}^{\prime}$ be the projection of \mathbb{R}^{n} onto \mathbb{R}^{s}. Show that $\pi(A)$ is an open subset of \mathbb{R}^{s} if A is open in \mathbb{R}^{n}. Hint: First consider the case $s=1, n=2$.

Problem 6.11 In the following, S has the metric induced from \mathbb{R}. In each case state whether A is open in S, closed in S, or neither. Justify your answers.

1. $S=[a, c) \cup(c, b], A=[a, c), a<c<b$.
2. $S=(0,1]$ and $A=\{1,1 / 2,1 / 3, \ldots\}$.
3. $S=[0,1]$ and $A=\{1,1 / 2,1 / 3, \ldots\}$.

Problem 6.12 Let S be an open (closed) subset of a metric space (X, d). Prove that a subset of S is open (closed) in S iff it is open (closed) in X.

Problem 6.13 Let X be any set. We define the discrete metric on X by

$$
d(x, y)= \begin{cases}1 & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

1. Prove d is a metric.
2. Describe the open balls $B_{r}(x)$ about $x \in X$ (you will need to consider different values of r).
3. Find $\operatorname{int}\{x\}, \operatorname{ext}\{x\}, \partial\{x\}, \overline{\{x\}}$.

Problem 6.14 Let (X, d) be any metric space. Define

$$
\bar{d}(x, y)=\min (1, d(x, y))
$$

1. Prove \bar{d} is a metric.
2. If (X, d) is \mathbb{R}^{2} with the usual metric, describe the open balls $B_{r}(\mathbf{0})$. Draw a diagram.
3. Prove (in the general case) that d and \bar{d} give the same open sets.

Problem 6.15 Let $\left(X, d_{1}\right)$ and $\left(X, d_{2}\right)$ be two metric spaces (with the same underlying set X).

We say that the metrics are comparable if there exist real numbers $\alpha>0$ and $\beta>0$ such that

$$
\begin{aligned}
d_{1}(x, y) & \leq \alpha d_{2}(x, y) \\
d_{2}(x, y) & \leq \beta d_{1}(x, y)
\end{aligned}
$$

for all $x, y \in X$.

1. Suppose B^{1} and B^{2} denote balls corresponding to two equivalent metrics d_{1} and d_{2}. Prove that $B_{r}^{2}(x) \subset B_{\alpha r}^{1}(x)$ and $B_{r}^{1}(x) \subset B_{\beta r}^{2}(x)$ for all $x \in X$ and $r>0$. Deduce that the open sets are the same for both metrics.
2. Write down an expression for the sup metric (induced from the sup norm) on \mathbb{R}^{n}. Prove it is equivalent to the (standard) Euclidean metric. ${ }^{10}$
3. Prove that the Euclidean metric on \mathbb{R}^{2}, and the metric induced from the Euclidean metric as in Problem 6.14, are not equivalent.
4. Write down an expression for the sup metric (induced from the sup norm) on $\mathcal{C}[a, b]$. The L_{1} metric on $\mathcal{C}[a, b]$ is defined by

$$
d_{1}(f, g)=\int_{a}^{b}|f-g|
$$

*Prove that the L_{1} metric is bounded by a multiple of the sup metric, but not conversely.
5. *Give an example of a set open with respect to the sup metric on $\mathcal{C}[a, b]$, but not open with respect to the L_{1} metric.

Problem 6.16 1. Prove Proposition 6.3.5
2. Carefully write out the proof of Theorem 6.4.8 for the case of arbitrary (not necessarily finite) intersections.

Problem 6.17 In the following, we are working with subsets of a fixed metric space (X, d). You should first think of \mathbb{R}^{2} (or \mathbb{R}).

1. Prove that $\operatorname{int} A$ is the largest open subset of A, in the sense that:
(a) If $B \subset A$ and B is open, then $B \subset \operatorname{int} A$;
(b) $\operatorname{int} A=\bigcup_{O \in \mathcal{F}} O$, where \mathcal{F} is the family of all open subsets of A.
2. Prove that for any set $A, \operatorname{int} A={\overline{A^{c}}}^{c}$ and $\bar{A}=\left(\operatorname{int} A^{c}\right)^{c}$.
3. (a) Formulate a result similar to (1) for the closure of a set.
(b) Deduce this result from (1) and (2).

Problem 6.18 In this question we will establish a number of interesting and important inequalities. We will also discuss some very important normed spaces

[^7]1. Young's Inequality Let $f:[0, \infty) \rightarrow[0, \infty)$ be strictly increasing with $f(0)=0$ and $\lim _{x \rightarrow \infty} f(x)=\infty$. Let $g:[0, \infty) \rightarrow[0, \infty)$ be the inverse function defined by

$$
g(y)=x \quad \text { iff } \quad f(x)=y
$$

Argue informally, using the following diagrams according as $f(a) \leq b$ or $f(a)>b$, to show that if $a, b \geq 0$ then

$$
a b \leq \int_{0}^{a} f+\int_{0}^{b} g
$$

and equality holds iff $f(a)=b$.

2. Young's Inequality If $p>1$ the conjugate p^{\prime} of p is defined by

$$
\frac{1}{p}+\frac{1}{p^{\prime}}=1
$$

i.e.

$$
p^{\prime}=\frac{p}{p-1} .
$$

Note that the graph of p^{\prime} plotted against p looks like:

Deduce from 1. that if $p>1$ and $a, b \geq 0$ then

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{p^{\prime}}}{p^{\prime}}
$$

and equality holds iff $a^{p}=b^{p^{\prime}}$.
3. Hölder's Inequality Suppose a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} are real numbers. Suppose $p>1$. Show that

$$
\sum\left|a_{i} b_{i}\right| \leq\left(\sum\left|a_{i}\right|^{p}\right)^{1 / p}\left(\sum\left|b_{i}\right|^{p^{\prime}}\right)^{1 / p^{\prime}}
$$

Hint: Use Young's Inequality to first prove the result in the case $\sum a_{i}{ }^{p}=\sum b_{i}{ }^{p^{\prime}}=1$. Then note that by dividing each a_{i} by some constant α we may assume $\sum a_{i}{ }^{p}=1$, and similarly by dividing each b_{i} by some constant β we may assume $\sum b_{i}{ }^{p^{\prime}}=1$.
4. Hölder's Inequality Suppose $f, g \in \mathcal{C}[a, b]$. Suppose $p>1$. Show that

$$
\int_{a}^{b}|f g| \leq\left(\int_{a}^{b}|f|^{p}\right)^{1 / p}\left(\int_{a}^{b}|g|^{p^{\prime}}\right)^{1 / p^{\prime}}
$$

Hint: First prove the result in the case $\int_{a}^{b}|f|^{p}=\int_{a}^{b}|g|^{p^{\prime}}=1$.
5. For $x \in \mathbb{R}^{n}$ and $p \geq 1$ define

$$
\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

Prove this defines a norm. Hint: The main point is the triangle inequality, which is also called Minkowski's Inequality. For this, first assume that $\|x+y\|_{p}=1$ and apply Hölder's inequality.
6. For $f \in \mathcal{C}[a, b]$ define

$$
\|f\|_{p}=\left(\int_{a}^{b}|f|^{p}\right)^{1 / p}
$$

Prove this defines a norm. Again, the main point is the triangle inequality, which is also called Minkowski's Inequality.
*Remark The last result generalises with essentially the same proof to the Lebesgue integral over an arbitrary measure space. The penultimate result is also true for infinite sequences, again with almost exactly the same proof; it is in fact a particular case of the Lebesgue integral result.

Problem 6.19 1. The unit circle in \mathbb{R}^{2} is defined by

$$
S^{1}=\{(\cos \theta, \sin \theta): 0 \leq \theta \leq 2 \pi\}
$$

If $p_{i}=\left(\cos \theta_{i}, \sin \theta_{i}\right) \in S^{1}$ for $i=1,2$ define

$$
d\left(p_{1}, p_{2}\right)=\left|\theta_{1}-\theta_{2}\right| .
$$

Show that d defines a metric on S^{1} (you may assume the usual properties of the trigonometric functions). Describe this metric geometrically in one sentence.
2. In any metric space, prove that $\partial A=\bar{A} \backslash \operatorname{int} A$ (your proof should only be a couple of lines).
3. Let $X=[0,1]$ with the standard metric from \mathbb{R}. Describe the (open) balls of radius 2 and of radius $1 / 2$ about 0 (i.e. what are the members?).
4. What if $X=\mathbb{N}$?
5. Give an example of a set in \mathbb{R} with exactly three limit points.
6. Let $\left(x_{n}\right)$ be a sequence in \mathbb{R}. Let L be the set of all points $x \in \mathbb{R}$ for which there is a subsequence of $\left(x_{n}\right)$ converging to x.
(a) Give an example of a sequence for which the corresponding set L has exactly two members.
(b) Give an example for which the corresponding set L has uncountably many members.

7 Sequences and Convergence

Problem 7.1 Use Theorem 7.5.1 to find the limit, if it exists, of the sequence in \mathbb{R}^{2} given by $\left(x_{n}, y_{n}\right)=\left(1-2^{-n},\left(n^{2}+3^{n}\right) / n!\right)$.

Problem 7.2 Use Corollary 7.6 .2 to prove that if $A \subset \mathbb{R}^{s}$ and $B \subset \mathbb{R}^{n-s}$, and A and B are closed, then $A \times B$ is closed as a subset of \mathbb{R}^{n}.

Problem 7.3 Let $x_{m} \rightarrow x_{0}$ and $y_{m} \rightarrow y_{0}$ in \mathbb{R}, and assume $y_{m} \neq 0$ for $m=0,1,2, \ldots$. Prove that $x_{m} / y_{m} \rightarrow x_{0} / y_{0}$. HINT: From (7.7) it is sufficient to show that $y_{m}^{-1} \rightarrow y_{0}^{-1}$.

Note that a similar result, with a similar proof, is true if $\left(x_{m}\right)$ is a sequence in a normed space.

Problem 7.4 Prove that $x_{0}=y_{0}$ in the Example in Section 7.4.
Problem 7.5 If $A=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{R}^{n}$, use Corollary 7.6.2 to prove that A is closed. Your proof should work in any metric space. [HINT: $A=$ $\left\{a_{1}\right\} \cup \cdots \cup\left\{a_{n}\right\}$, and so it is sufficient to show that any singleton $\{a\}$ is closed.]

Problem 7.6 If $A \subset \mathbb{R}^{2}$ is open, prove that A is a countable union of balls $B_{r}(\mathbf{x})$. [HINT: Let S be the set of all balls $B_{r}(\mathbf{x})$ where r is rational and the components of \mathbf{x} are both rational. First prove S is countable]

Problem 7.7 1. If $x_{n} \rightarrow x$ in a normed space, prove $\left\|x_{n}\right\| \rightarrow\|x\|$.
2. In Corollary 7.6.2 we characterised closed subsets of a metric space in terms of convergent sequences. Prove the following analogous result for open sets:
Let $A \subset X$ where (X, d) is a metric space. Then A is open iff: $x \in A$ and $x_{n} \rightarrow x$ implies $x_{n} \in A$ for all sufficiently large n.

Problem 7.8 In the following, we are working with subsets of a fixed metric space (X, d). You should first think of \mathbb{R}^{2} (or \mathbb{R}).

1. If $A=B_{1} \cup B_{2}$, use sequences to prove $\bar{A}=\overline{B_{1}} \cup \overline{B_{2}}$.
2. If $A=\bigcup_{i=1}^{n} B_{i}$, use sequences to prove $\bar{A}=\bigcup_{i=1}^{n} \overline{B_{i}}$.
3. If $A=\bigcup_{i=1}^{\infty} B_{i}$, use sequences to prove $\bar{A} \supset \bigcup_{i=1}^{\infty} \overline{B_{i}}$.
4. Give a simple counterexample in \mathbb{R} to equality in (3).

Problem 7.9 1. Prove (7.7) of the Notes
2. (a) Show that $|\log (n+1)-\log n| \rightarrow 0$ as $n \rightarrow \infty$.
(b) Is the sequence $(\log n)_{n=1}^{\infty}$ Cauchy? Explain.

8 Cauchy Sequences

Problem 8.1 Suppose $\mathbf{x}=\left(x^{1}, x^{2}, \ldots, x^{n}, \ldots\right)$ and $\mathbf{y}=\left(y^{1}, y^{2}, \ldots, y^{n}, \ldots\right)$ are infinite sequences of real numbers, and that c is a scalar (i.e. a real number). The sum and scalar product are defined by

$$
\begin{aligned}
\mathbf{x}+\mathbf{y} & =\left(x^{1}+y^{1}, x^{2}+y^{2}, \ldots, x^{n}+y^{n}, \ldots\right) \\
c \mathbf{x} & =\left(c x^{1}, c x^{2}, \ldots, c x^{n}, \ldots\right)
\end{aligned}
$$

Let \mathcal{V} (or more frequently ℓ_{2}) denote the set of all such sequences \mathbf{x} for which

$$
\sum_{n \geq 1}\left|x^{n}\right|^{2}<\infty
$$

For $\mathbf{v} \in \mathcal{V}$ define

$$
\|\mathbf{x}\|=\left(\sum_{n \geq 1}\left|x^{n}\right|^{2}\right)^{1 / 2}
$$

1. Prove that $(\mathcal{V},\|\cdot\|)$ is a normed vector space.
2. Prove that $(\mathcal{V},\|\cdot\|)$ is complete.
3. For $i=1,2, \ldots$ define $\mathbf{e}_{\mathbf{i}}=(0, \ldots, 0,1,0, \ldots)$, where the 1 occurs in the i th position. Let $A=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots\right\}$. Prove that the set A is closed and bounded in \mathcal{V}.

Problem 8.2 An infinite series $\sum_{i=1}^{\infty} \mathrm{x}_{i}$ from \mathbb{R}^{k} converges absolutely if the corresponding series (in \mathbb{R}) of absolute values $\sum_{i=1}^{\infty}\left|\mathbf{x}_{i}\right|$ converges. Prove that any absolutely convergent infinite series is convergent. (Hint: Prove that the sequence of partial sums is Cauchy.)

Give a simple counterexample in \mathbb{R} to the converse.
Note: The same result and proof holds in any complete normed space.

Problem 8.3 Let $f: I \rightarrow \mathbb{R}$ where I is an interval from \mathbb{R}. Suppose f is differentiable and $\left|f^{\prime}(x)\right| \leq \lambda$ for all $x \in I$.
(i) Show f is a contraction map if $\lambda<1$ [HINT: Use the Mean Value Theorem].
(ii) If $f: I \rightarrow I$ and $\lambda<1$ show the equation $f(x)=x$ has a unique solution.

Problem 8.4 Let $f: I \rightarrow I$ where $I=[0, \infty)$. Give an example where $|f(x)-f(y)|<|x-y|$ for all $x, y \in I$ and $x \neq y$, but f does not have a fixed point.

Why does this not contradict the Contraction Mapping Principle? Note that I is closed in \mathbb{R} and so is complete with the metric induced from \mathbb{R}.

Problem 8.5 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
f(x, y)=\left(\frac{1}{3} \sin x-\frac{1}{3} \cos y+2, \frac{1}{6} \cos x-\frac{1}{2} \sin y-1\right) .
$$

Use the Contraction Mapping Principle to show that f has a fixed point.
Problem 8.6 1. Give a sequence $\left(A_{n}\right)$ of closed non-empty subsets of \mathbb{R} such that $A_{1} \supset A_{2} \supset \cdots$ and $\bigcap_{n=1}^{\infty} A_{n}=\emptyset$.
2. If $A \subset X$ then the diameter of A is defined by

$$
\operatorname{diam} A=\sup \{d(x, y): x \in A, y \in A\} .
$$

Suppose (X, d) is complete, $\left(A_{n}\right)$ is a sequence of closed non-empty subsets such that $A_{1} \supset A_{2} \supset \cdots$ and $\operatorname{diam} A \rightarrow 0$ as $n \rightarrow \infty$. Prove $\bigcap_{n=1}^{\infty} A_{n} \neq \emptyset$.

HINT: Define an appropriate Cauchy sequence.
Problem 8.7 1. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be given by $F\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right)$ where

$$
y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}+b_{i} \quad i=1, \ldots, n .
$$

(a) Show that F is a contraction map in the sup metric with contraction ratio λ if $\sum_{j}\left|a_{i j}\right| \leq \lambda<1$ for each i.
(b) Show that F is a contraction map in the standard metric with contraction ratio $\lambda^{1 / 2}$ if $\sum_{i, j} a_{i, j}^{2} \leq \lambda^{2}<1$.
(c) Deduce that $F(x)=x$ has a solution assuming the condition in either (a) or (b).
2. Suppose $F: X \rightarrow X$ where (X, d) is a complete metric space. Assume that F^{n} is a contraction map for some $n \geq 1$. Prove that F has a unique fixed point.

Problem 8.8 Suppose $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by

$$
F\binom{x_{1}}{x_{2}}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{b_{1}}{b_{2}} .
$$

1. Use Hölder's inequality to find a simple condition on a_{11}, \ldots, a_{22} such that F is a contraction map, and hence such that the Contraction Mapping Theorem applies.
2. What is the fixed point of F ?
3. If

$$
A=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

for which λ_{1} and λ_{2} is F a contraction map according to 1 . ?
4. For which λ_{1} and λ_{2} is F actually a contraction map?

9 Sequences and Compactness

Problem 9.1 Prove that a subset of a compact metric space is compact iff it is closed.

Problem 9.2 Suppose $A \subset X$ where (X, d) is a metric space. For any $x \in X$ define $f(x)=d(x, A)$, where $d(x, A)$ is the distance from x to A defined in (9.1).

Prove that f is Lipschitz with Lipschitz constant 1. (Be careful: remember that it is not necessarily true that $d(x, A)=d(x, a)$ for some $a \in A$. When this is true the proof is easier.)

Problem 9.3 1. $A \subset \mathbb{R}^{n}$ is convex if whenever $x \in A$ and $y \in A$ then $\lambda x+(1-\lambda) y \in A$ for all $0<\lambda<1$.
Prove that if A is a closed bounded convex subset of \mathbb{R}^{n} then for any $x \notin A$ there is a unique nearest point in A.
2. Suppose $x \in X$. Suppose that $\left(x_{n}\right)$ is a sequence from X with the property that every subsequence contains a further subsequence which converges to x.
Prove that the original sequence converges to x.
Problem 9.4 1. Use Definition 9.3.1 to prove that a closed subset of a compact set is compact.
2. Use Definition 9.3.1 to:
(a) prove that the intersection of any (not necessarily finite) collection of compact sets is compact;
(b) prove that the union of any finite collection of compact sets is compact.
3. Give a simple example in \mathbb{R} to show that the union of a collection of compact sets need not be compact.

Problem 9.5 Let X be the collection of all sequences of the form

$$
x=\left(x_{1}, x_{2}, \ldots\right)
$$

for which there exists an integer N such that $x_{i}=0$ if $i \geq N$ (of course, N will depend on x). Define

$$
d(x, y)=\max _{1 \leq i<\infty}\left|x_{i}-y_{i}\right| .
$$

1. Show (X, d) is a metric space.
2. Show it is not complete.
3. Find a subset which is closed and bounded but not compact (prove your claims).

10 Limits of Functions

Problem 10.1 Find the following limits, if they exist. Explain your reasoning.
(1) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+y^{4}}{x^{2}+y^{2}}$,
(2) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$,
(3) $\lim _{|\mathbf{X}| \rightarrow \infty} \frac{\left|\mathbf{x}-\mathbf{x}_{1}\right|}{\left|\mathbf{x}-\mathbf{x}_{2}\right|}$.

Problem 10.2 1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{2} y}{x^{4}+y^{2}} & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array}\right.
$$

Let $a \in \mathbb{R}$ and define

$$
\begin{aligned}
& S_{1}=\{(x, y): y=a x\} \\
& S_{2}=\left\{(x, y): y=a x^{2}\right\} \\
& S_{3}=\left\{(x, y): x^{2}=y^{3}\right\} \\
& S_{4}=\mathbb{R}^{2}
\end{aligned}
$$

Evaluate each of the four limits (if they exist, and explain why not if they do not exist)

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\(x, y) \in S_{n}}} f(x, y) .
$$

Also evaluate the iterated limits (if they exist, and explain why not if they do not exist)

$$
\lim _{x \rightarrow 0}\left(\lim _{y \rightarrow 0} f(x, y)\right), \quad \lim _{y \rightarrow 0}\left(\lim _{x \rightarrow 0} f(x, y)\right) .
$$

2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=\frac{x^{2} y}{x^{6}+y^{2}}(x, y) \neq(0,0)
$$

Show that f is not bounded in any open ball centred at $(0,0)$, but the restriction of f to any straight line $L \subset \mathbb{R}^{2}$ which passes through the origin, is continuous on $L .{ }^{11}$

[^8]
11 Continuity

Problem 11.1 Use Theorem 11.4.1 to show that the following are closed

1. $\left\{x:-2 \leq x \leq 2, x^{3}=x \geq 0\right\} \subset \mathbb{R}$.
2. $\left\{\mathbf{x}: \mathbf{y}_{0} \cdot \mathbf{x} \leq|\mathbf{x}|\right\} \subset \mathbb{R}^{n}$, where \mathbf{y}_{0} is a given vector.

Problem 11.2 Let $D=\{\mathbf{x}:|\mathbf{x}| \leq 1\}$ be the closed unit ball in \mathbb{R}^{n}. Let

$$
f: D \rightarrow D
$$

be a continuous function.

1. Use the Intermediate Value Theorem to prove that if $n=1$ then f has a fixed point. [Hint: Draw a graph]
2. Assume (for arbitrary n) that f is Lipschitz with Lipschitz constant 1. Use the Contraction Mapping Principle to prove that f has a fixed point. [Hint: First consider the contraction maps $f_{k}=(1-1 / k) f$]
3. Give an example where D is replaced by the annulus $A=\{\mathrm{x}: 1 \leq|\mathrm{x}| \leq 2\}$, f has Lipschitz constant 1 , but f has no fixed point.

Remark: It is in fact true that any continuous $f: D \rightarrow D$ has a fixed point. This deep result is known as the Brouwer Fixed Point Theorem. You may prove it in a later course in topology.

Problem 11.3 1. Suppose that $a \in X$. Show that the function f defined by $f(x)=d(a, x)$ is continuous.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=\left\{\begin{array}{cc}
x \sin \frac{1}{y} & y \neq 0 \\
0 & y=0
\end{array}\right.
$$

Is f continuous at $(0,0)$? Explain.
3. Use Corollary 11.4.2 to prove

$$
\left\{(x, y): x^{2} \leq y^{3} \text { and } \sin x \geq 3 y\right\}
$$

is closed.

Problem 11.4 1. Use Theorem 11.4.1 to prove that

$$
\left\{(x, y) \in \mathbb{R}^{2}: x^{2}-3 x y<7 \text { or } \sin x \neq \frac{1}{2}\right\}
$$

is open.
2. Give an example of a continuous function $f: \mathbb{R} \rightarrow[-1,1]$ such that f is not uniformly continuous.
3. Prove that $f(x)=x^{3}$ is uniformly continuous on $[-a, a]$ for each $a>0$, but is not uniformly continuous on \mathbb{R}.

Problem 11.5 ${ }^{12}$ If (X, d) is a metric space and A and B are non-empty disjoint closed subsets, prove that there is a continuous function $f: X \rightarrow[0,1]$ such that $f(x)=0$ for $x \in A, f(x)=1$ for $x \in B$, and $0<f(x)<1$ otherwise.

HINT: See Problem 9.2. Let

$$
f(x)=\frac{d(x, A)}{d(x, A)+d(x, B)} .
$$

Problem 11.6 ${ }^{13}$ Suppose $K(x, y)$ is a Lipschitz function defined on $[a, b] \times$ \mathbb{R}, with Lipschitz constant M. Suppose $c \in \mathbb{R}$.

Prove there is a unique continuous function u defined on $[a, a+h]$ such that

$$
u(x)=c+\int_{a}^{x} K(t, u(t)) d t
$$

for all $x \in[a, a+h]$, provided $h<\min \{b-a, 1 / M\}$.
HINT:

1. Let $G: \mathcal{C}[a, b] \rightarrow \mathcal{C}[a, b]$ be given by

$$
(G(f))(x)=c+\int_{a}^{x} K(t, f(t)) d t
$$

That is, if $f \in \mathcal{C}[a, b]$ then $G(f)$ is the function defined by the above equation. It is necessary to show that $G(f)$ is indeed continuous.
2. Prove that G is a contraction map on $\mathcal{C}[a, a+h]$.
3. Now consider the function which is the fixed point of G.

Remark The integral equation is essentially equivalent to the (initial value) differential equation problem

$$
\begin{aligned}
u^{\prime}(x) & =K(x, u(x)) \\
u(a) & =c .
\end{aligned}
$$

Thus the preceding problem shows the existence and uniqueness of a solution to the differential equation problem on some interval $[a, a+h]$. The same proof easily generalises, apart from notational changes, to systems of differentail equations.

[^9]Problem 11.7 1. Give an example of two functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which are uniformly continuous and yet $f g$ is not uniformly continuous.
2. Prove that if $f, g: X \rightarrow \mathbb{R}$ are uniformly continuous where (X, d) is a metric space, then $f+g$ is uniformly continuous.

Problem 11.8 Let $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right)$ and $\left(X_{3}, d_{3}\right)$ be metric spaces. Suppose $f: X_{1} \rightarrow X_{2}$ and $g: X_{2} \rightarrow X_{3}$ are continuous. Prove $g \circ f: X_{1} \rightarrow X_{3}$ is continuous

1. by using Theorem 11.1.2(3),
2. by using Theorem 11.4.1(2).

Problem 11.9 A subset D of a metric space (X, d) is dense if every member of X is a limit of a sequence of elements from D.

Suppose (X, d) and (Y, ρ) are metric spaces and D is a dense subset of $X .{ }^{14}$

1. Prove that if $f: D \rightarrow Y$ is uniformly continuous then there exists an extension ${ }^{15}$ of f to a uniformly continuous function $\bar{f}: X \rightarrow Y$. Hint: if $d_{n}(\in D) \rightarrow x \in X$ define $\bar{f}(x)=\lim f\left(d_{n}\right)$.
2. Show the result is not true if "uniformly continuous" is everywhere replaced by "continuous".
[^10]
12 Uniform Convergence of Functions

Problem 12.1 Let $f_{n}(x)=x^{n}$ for $x \in[0,1]$. Let $f(x)=0$ if $x \in[0,1)$ and let $f(1)=1$. Then clearly $f_{n} \rightarrow f$ pointwise in $[0,1]$. Prove directly from the definition of uniform convergence that f_{n} does not converge uniformly to f.

Note: It follows that f_{n} does not converge uniformly to any function g, since uniform convergence to g clearly implies pointwise convergence to g.

Problem 12.2 Let $f(x)=\sum_{k=1}^{\infty}(\sin k x) / k^{2}$. Use Theorem 12.3.1 to prove that f is continuous on \mathbb{R}.

Problem 12.3 Let $\left(a_{m n}\right)_{m \geq 1, n \geq 1}$ be a doubly infinite sequence of real numbers as shown below:

$$
\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & a_{14} & \ldots \\
a_{21} & a_{22} & a_{23} & a_{24} & \ldots \\
a_{31} & a_{32} & a_{33} & a_{34} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}
$$

Assume that

$$
\lim _{m \rightarrow \infty} a_{m n}=b_{n}
$$

for $n=1,2, \ldots$ and that

$$
\lim _{n \rightarrow \infty} a_{m n}=c_{m}
$$

for $m=1,2, \ldots$.

1. Give an example where

$$
\lim _{m \rightarrow \infty} c_{m}, \quad \lim _{n \rightarrow \infty} b_{n}
$$

both exist but are not equal.
2. We say $a_{m n} \rightarrow b_{n}$ as $m \rightarrow \infty$ uniformly in n if:
for each $\epsilon>0$ there exists an M such that

$$
m \geq M \text { implies }\left|a_{m n}-b_{n}\right|<\epsilon
$$

for all n. In this case
(a) Prove that $\left(c_{m}\right)_{m=1}^{\infty}$ is Cauchy, and hence that $\lim _{m \rightarrow \infty} c_{m}$ exists. Denote the limit by c.
(b) Deduce that $\lim _{n \rightarrow \infty} b_{n}$ exists, and that moreover

$$
\lim _{n \rightarrow \infty} b_{n}=c
$$

13 First Order Systems of Differential Equations

Problem 13.1 Convert the integral equation

$$
x(t)=1+\int_{0}^{t}(x(s))^{2} d s
$$

where $t \in[0,1]$, into an initial value problem. What is $x(0)$?
Problem 13.2 Consider the system of differential equations

$$
\begin{aligned}
x^{\prime \prime}(t)+x^{\prime}(t)+y(t) & =0 \\
y^{\prime}(t)+y(t)+x(t) & =0
\end{aligned}
$$

where

$$
x(0)=1, x^{\prime}(0)=0, y(0)=1
$$

Convert this to an equivalent system of first-order differential equations. Carefully state the interpretation of the new variables, and their initial values.

Problem 13.3 Assume $K:[a, b] \times[a, b] \rightarrow \mathbb{R}$ and K is continuous. Recall that this implies K is uniformly continuous on $[a, b] \times[a, b]$.

Let $x:[a, b] \rightarrow \mathbb{R}$ be continuous and define

$$
f(t)=\int_{a}^{b} K(s, t) x(s) d s
$$

Prove that f is continuous on $[a, b]$.
Problem 13.4 Consider the integral equation

$$
x(t)=e^{t}+\frac{1}{2} \int_{0}^{1} t \cos (t s) x(s) d s
$$

for $x \in \mathcal{C}[0,1]$ (i.e. x is a continuous function defined on $[0,1]$).
Show the integral equation has a solution in $\mathcal{C}[0,1]$.
Problem 13.5 Suppose that $y(t) \in C^{1}[0,+\infty)$ (meaning that $y:[0,+\infty) \rightarrow$ \mathbb{R} is continuously differentiable) satisfies

$$
\begin{aligned}
y^{\prime}(t) & =2 \sqrt{|y(t)|} \quad \text { for } t>0 \\
y(0) & =0
\end{aligned}
$$

Give a detailed proof that then there is $a \in[0,+\infty]$ such that
(Hint: How to determine a ?)

Problem 13.6 1. Let $g:[0,+\infty) \rightarrow[0,+\infty)$ be continuous and suppose that there are constants $A, B \geq 0$ such that

$$
\begin{equation*}
g(t) \leq A+B \int_{0}^{t} g(s) d s \quad \text { for every } t \geq 0 \tag{1}
\end{equation*}
$$

Show that $g(t) \leq A e^{B t}$ for every $t \geq 0$.
(Hint: Introduce $G(t)=\int_{0}^{t} g(s) d s$, multiply both sides of (1) by $e^{-B t}$ and integrate.)
2. Let $f=f(t, x): \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous and (globally) Lipschitz with respect to x, i.e. there is $L \geq 0$ such that

$$
|f(t, x)-f(t, y)| \leq L|x-y| \quad \text { for all } t, x, y \in \mathbb{R}
$$

Let $x_{0} \in \mathbb{R}$. Use the first part to show that the initial value problem

$$
\begin{aligned}
x^{\prime}(t) & =f(t, x(t)) \quad \text { for } t>0 \\
x(0) & =x_{0}
\end{aligned}
$$

has at most one solution $x \in C^{1}[0,+\infty)$.
(Hint: Suppose that $x(t), y(t) \in C^{1}[0,+\infty)$ solve the IVP and consider $g(t)=|x(t)-y(t)|$ or $g(t)=|x(t)-y(t)|^{2}$.)
3. Under the assumptions of 2 show that the IVP has a solution $x(t) \in$ $C^{1}[0,+\infty)$.
(Hint: Study the proof of Local Existence and Uniqueness Theorem 13.9.2. Check that in our situation h can be chosen independently of t_{0} and x_{0} and iterate.)

Problem 13.7 1. Let $T>0$ and $L \geq 0$. Consider $C[0, T]$ (the space of all continuous functions on $[0, T])$ and for $x(t), y(t) \in C[0, T]$ define

$$
\rho(x, y)=\sup _{0 \leq t \leq T} e^{-L t}|x(t)-y(t)| .
$$

Check that $(C[0, T], \rho)$ is a complete metric space.
2. Let $T>0$. Under the assumptions of 2 consider an appropriate integral operator as in the proof of Theorem 13.9.2. Verify that this operator is a contraction on $(C[0, T], \rho)$. Deduce that (IVP) has a solution $x(t) \in$ $C^{1}[0, T]$. Deduce from this that (IVP) has a (unique) solution $x \in$ $C^{1}[0,+\infty)$.

Problem 13.8 1. Let (X, d) be a metric space, $A \subset X$ be compact and $f: A \rightarrow \mathbb{R}$ be L-Lipschitz, i.e. $L \geq 0$ and

$$
|f(x)-f(y)| \leq L d(x, y) \quad \text { for all } x, y \in A
$$

Define $\tilde{f}: X \rightarrow \mathbb{R}$ according to

$$
\tilde{f}(x)=\sup \{f(a)-L d(a, x): \quad a \in A\} \quad \text { for } x \in X
$$

Show that \tilde{f} is well-defined, L-Lipschitz on X and $\tilde{f}_{\mid A}=f$ (that is, $\tilde{f}(a)=f(a)$ for $a \in A$.)
2. Let $A \subset \mathbb{R}^{n}$ be closed and bounded and $f: A \rightarrow \mathbb{R}^{k}$ be Lipschitz. Show that there exists $\tilde{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ which is Lipschitz on \mathbb{R}^{n} and satisfies $\tilde{f}_{\mid A}=f$.
3. Let $U \subset \mathbb{R}$ be open, $f=f(x): U \rightarrow \mathbb{R}$ be locally Lipschitz and $x_{0} \in U$. Consider the following autonomous initial value problem

$$
\begin{aligned}
x^{\prime}(t) & =f(x(t)) \text { for } t>0 \\
x(0) & =x_{0} .
\end{aligned}
$$

Use 1 and 3 (or 2) show that there is a local solution (meaning that there is $h>0$ and $x(t) \in C^{1}[0, h]$ satisfying $x(0)=x_{0}$ and $x^{\prime}(t)=f(x(t))$ for $0<t<h$.
4. ** A generalisation of 1 can be used to deduce the full (i.e., nonautonomous) Local Existence Theorem 13.9.2 from 3 (or 2). State and prove a required result and carry out the deduction mentioned above.

Problem 13.9 Suppose that $f(t, x): \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $\frac{\partial f}{\partial x}$ exists everywhere and is bounded:

$$
\exists K \geq 0 \forall t, x \in \mathbb{R} \quad\left|\frac{\partial f}{\partial x}(t, x)\right| \leq K
$$

Show that for every $x_{0} \in \mathbb{R}$ the initial value problem

$$
\begin{aligned}
x^{\prime}(t) & =f(t, x(t)) \quad \text { for } t \in(-\infty, \infty) \\
x(0) & =x_{0}
\end{aligned}
$$

has a unique solution $x \in C^{1}(-\infty,+\infty)$.
Problem 13.10 Consider the initial value problem:

$$
\begin{aligned}
x^{\prime}(t) & =(x(t))^{2} \\
x(0) & =1
\end{aligned}
$$

Solve this IVP. Where is the solution defined? Is there a unique solution? Does Local Existence and Uniqueness Theorem apply? If so, what value of h does Theorem 13.9.2 give? Discuss.

Problem 13.11 Let A be an $n \times n$ matrix, and consider the linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t), \quad \mathbf{x}(t) \in \mathbb{R}^{n}, t \in \mathbb{R}
$$

Show that a solution is

$$
\mathbf{x}(t)=e^{t A} \mathbf{x}(0)
$$

where given an $n \times n$ matrix B,

$$
e^{B}=\sum_{n=0}^{\infty} \frac{B^{n}}{n!}
$$

What is the interval of existence? Is this solution unique?

Problem 13.12 Let $K:[0,1] \times[0,1] \rightarrow(-1,1)$ and $\varphi:[0,1] \rightarrow \mathbb{R}$ both be continuous. Prove that there is a unique continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that

$$
f(x)=\varphi(x)+\int_{0}^{1} K(x, y) f(y) d y \quad \text { for all } x \in[0,1]
$$

(Hint: show that an appropriate integral operator is a contraction on $\left(C[0,1], d_{u}\right)$.)

14 Fractals

Problem 14.1 Show that there is no non-empty interval I with $I \subset C$, where C is the Cantor set.

Problem 14.2 If $f: A\left(\subset \mathbb{R}^{n}\right) \rightarrow \mathbb{R}$, the graph of f is defined by

$$
G(f)=\{(x, f(x)): x \in A\} \subset \mathbb{R}^{n} \times \mathbb{R}=\mathbb{R}^{n+1}
$$

Suppose that also $f_{k}: A \rightarrow \mathbb{R}$ for $k=1,2, \ldots$. Assume that A is compact and f is continuous.

1. Prove that $G(f)$ is compact.
2. Prove that $f_{k} \rightarrow f$ uniformly implies $G\left(f_{k}\right) \rightarrow G(f)$ in the Hausdorff metric sense.

15 Compactness

Problem 15.1 Prove that a subset of a metric space is totally bounded iff its closure is totally bounded.

Problem 15.2 Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be continuous. For each $y \in[0,1]$, define the function $f_{y}:[0,1] \rightarrow \mathbb{R}$ by $f_{y}(x)=f(x, y)$.

Prove that the family of functions $\mathcal{F}=\left\{f_{y}: y \in[0,1]\right\}$ is equicontinuous.
Problem 15.3 1. Give an example of a function $f:(0,1) \rightarrow \mathbb{R}$ which is continuous, but such that there is no continuous function $g:[0,1] \rightarrow \mathbb{R}$ which agrees with f on $(0,1)$.
2. Suppose $f: A\left(\subset \mathbb{R}^{n}\right) \rightarrow \mathbb{R}$. Prove that if f is uniformly continuous then there is a unique continuous function ${ }^{16} g: \bar{A} \rightarrow \mathbb{R}$ which agrees with f on A.
3. Generalise.

Problem 15.4 Let X be a compact metric space. Suppose that $\left(F_{i}\right)_{i=1}^{\infty}$ is a nested (that is, $F_{i+1} \subseteq F_{i}$) sequence of nonempty closed subsets of X such that diameter $\left(F_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$. Show that there is exactly one point in $\bigcap_{i=1}^{\infty} F_{i}$. (By definition, diameter $\left(F_{i}\right)=\sup \left\{d(x, y): x, y \in F_{i}\right\}$.)
** The assumption that X be compact in 15.4 can be somewhat relaxed. State and prove an appropriate result.

Problem 15.5 1. Let $\emptyset \neq A, B \subset X$ with A closed, B compact and $A \cap B=\emptyset$. Show that there is $\epsilon>0$ such that $d(a, b)>\epsilon$ for all $a \in A$ and $b \in B$.
2. Is 1 true if A, B are merely closed?

Problem 15.6 Let X be compact and $T: X \rightarrow X$ be an isometry (meaning that $d(T x, T y)=d(x, y)$ for all $x, y \in X)$. Show that T is a surjection.
(Hint: If T is not surjective, select $y \notin T[X]$ and consider the sequence $y, T y, T(T y), \ldots$ Use 1.)

Problem 15.7 Let X be the set of all sequences $\left(x_{n}\right)_{n=1}^{\infty}$ such that $x_{n} \in[0,1]$ for all n. For $x=\left(x_{n}\right)_{n=1}^{\infty}, y=\left(y_{n}\right)_{n=1}^{\infty} \in X$ put

$$
d(x, y)=\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left|x_{n}-y_{n}\right| .
$$

Show that d makes X into a metric space. Prove that (X, d) is compact. (Hint: Show that X is sequentially compact. Given a sequence in X, extract a

[^11]subsequence whose first components converge, from this subsequence extract a subsequence whose second components converge etc. Then use a diagonal process as in the proof of Theorem 15.5.2.)

Problem 15.8 Let (X, d) be a compact metric space. Let $\left\{F_{s}\right\}_{s \in S}$ be a family of closed subsets of $X, U \subset X$ be open and suppose that $\bigcap_{s \in S} F_{s} \subset U$. Show that there is a finite set $\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subset S$ such that $\bigcap_{i=1}^{k} F_{s_{i}} \subset U$.

Problem 15.9 Let (X, d) be a compact metric space, let \mathcal{F} be an equicontinuous family of functions from X to X and let $g: X \rightarrow \mathbb{R}$ be continuous. Show that the family $\mathcal{K}=\{g \circ f: f \in \mathcal{F}\} \subset C(X ; \mathbb{R})$ is equicontinuous and that $\overline{\mathcal{K}}$ is compact.

Problem 15.10 Let (X, d) and (Y, ρ) be metric spaces and let $f: X \rightarrow Y$ be uniformly continuous and onto. Show that (Y, ρ) is totally bounded if (X, d) is totally bounded.

Problem 15.11 Let (X, d) be a compact metric space and let $T: X \rightarrow X$ satisfy $d(T(x), T(y))<d(x, y)$ for all $x, y \in X, x \neq y$. Show that T has a unique fixed point, that is, there is precisely one $x \in X$ such that $T(x)=x$.

16 Connectedness

Problem 16.1 Let C_{1}, C_{2}, \ldots be a sequence of connected subspaces of X such that $C_{i} \cap C_{i+1} \neq \emptyset$ for $i=1,2, \ldots$. Show that the union $\bigcup_{i=1}^{\infty} C_{i}$ is connected.

Problem 16.2 Let X be connected. Show that for every pair $x, y \in X$ and $\epsilon>0$ there exists a finite sequence $x_{1}, x_{2}, \ldots, x_{k}$ of points of X such that $x_{1}=x, x_{k}=y$ and $d\left(x_{i}, x_{i+1}\right)<\epsilon$ for $i=1,2, \ldots, k-1$.

Problem 16.3 Prove that every compact space X satisfying the condition in 16.2 is connected. Is the assumption of compactness essential?
(Hint: Use 1.)
Problem 16.4 Consider the following two possible properties for a subset X of \mathbb{R}^{n} :

1. i There is a point $x_{0} \in X$ such that every other point $x \in X$ can be joined to x_{0} by a straight line in X.
2. ii There is a point $x_{0} \in X$ such that every other point $x \in X$ can be joined to x_{0} by a differentiable path in X.

Give examples of each kind of set that are not convex. Show that either of these conditions implies connectedness of X. Show that if X satisfies either of these conditions and $f: X \rightarrow \mathbb{R}$ is a differentiable function with zero derivative, then f is constant. Show that if X is an open subset of \mathbb{R}^{n} then the following are equivalent: condition ii above, path connectedness of X, connectedness of X.

Problem 16.5 Let X be the space of all continuous functions from $[0,1]$ to $[0,1]$ equipped with the sup metric. Let X_{i} be the set of injective and X_{s} be the set of surjective elements of A and let $X_{i s}=X_{i} \cap X_{s}$. Prove or disprove: i) X_{i} is closed, ii) X_{s} is closed, iii) $X_{i s}$ is closed, iv) X is connected, v) X is compact.

Problem 16.6 If A and B are closed subsets of a metric space X, whose union and intersection are connected, show that A and B themselves are connected. Give an example showing that the assumption of closedness is essential.

Problem 16.7 Show that a metric space X is not connected if and only if there exists a continuous surjection $f: X \rightarrow\{0,1\}$.

Problem 16.8 Let X and Y be compact metric spaces and let $f: X \rightarrow Y$ be a continuous onto map with the property that $f^{-1}[\{y\}]$ is connected for every $y \in Y$. Show that if Y is connected then so is X.

17 Differentiation of Real-valued Functions

Problem 17.1 1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=\left\{\begin{array}{lll}
\frac{x^{2} y^{2}}{\sqrt{x^{2}+y^{2}}} \text { for } & (x, y) \neq(0,0) \\
0 & \text { for } & (x, y)=(0,0)
\end{array}\right.
$$

Is f differentiable at $(0,0)$?
2. Find a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ that is differentiable at each point but whose partials are not continuous at $(0,0)$.

Problem 17.2 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=\left\{\begin{array}{cc}
e^{-\frac{x^{2}}{y^{2}} \frac{y^{2}}{x^{2}}} & \text { for } x y \neq 0 \\
0 & \text { for } x y=0
\end{array}\right.
$$

Is f continuous? Is f differentiable? Do $\frac{\partial^{m+n} f}{\partial x^{n} \partial y^{m}}$ exist?

Problem 17.3 Prove or disprove: if $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence in $C^{2}(\mathbb{R} ; \mathbb{R})$, for some finite $M^{\prime \prime}$ and all $n, \sup _{\mathbb{R}}\left|f_{n}^{\prime \prime}\right| \leq M^{\prime \prime}$, and $f_{n} \rightarrow 0$ uniformly as $n \rightarrow \infty$, then for some M^{\prime} and all $n, \sup _{\mathbb{R}}\left|f_{n}^{\prime}\right| \leq M^{\prime}$.

18 Differentiation of Vector-valued Functions

Problem 18.1 1. Let $\mathbf{f}:[0,1] \rightarrow \mathbb{R}^{n}$ be a path. For $t \in[0,1]$ define $s(t)=\int_{0}^{t}\left|\mathbf{f}^{\prime}(\tau)\right| d \tau$, so that $s(t)$ represents the distance between $\mathbf{f}(0)$ and $\mathbf{f}(t)$ measured along the curve parametrised by \mathbf{f}. Let $l=s(1)$ denote the length of the path. Show that $s:[0,1] \rightarrow[0, l]$ is strictly increasing, $s \in C^{1}$, and that t can be regarded as a function of s : $t=t(s)$, where $t:[0, l] \rightarrow[0,1]$ is C^{1}. Let \mathbf{T} denote the unit tangent vector to the curve, i.e.

$$
\mathbf{T}(t)=\frac{\mathbf{f}^{\prime}(t)}{\left|\mathbf{f}^{\prime}(t)\right|}
$$

Check that $\mathbf{T}=\frac{d \mathbf{f}}{d s}$.
2. Now suppose also that $\mathbf{f} \in C^{2}$. The curvature κ of the curve parametrised by \mathbf{f} is defined as

$$
\kappa=\left|\frac{d \mathbf{T}}{d s}\right|,
$$

so that κ measures the rate of change of the unit tangent direction of the curve with respect to the arc length. Show that \mathbf{T} and $\frac{d \mathbf{T}}{d s}$ are orthogonal vectors. Show that for $n=3$

$$
\kappa=\frac{\left|\mathbf{f}^{\prime} \times \mathbf{f}^{\prime \prime}\right|}{\left|\mathbf{f}^{\prime}\right|^{3}}
$$

where " x " denotes the vector product in \mathbb{R}^{3}.
Problem 18.2 Let $\mathbf{f}:[0,1] \rightarrow \mathbb{R}^{3}$ be given by $\mathbf{f}(t)=\left(t, t^{2}, \frac{2}{3} t^{3}\right)$. Compute the curvature of this curve in two ways.

Problem 18.3 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be C^{2} and suppose that

$$
M_{0}=\sup |f|, \quad M_{1}=\sup \left|f^{\prime}\right|, \quad M_{2}=\sup \left|f^{\prime \prime}\right|
$$

are finite. Show that $M_{1}^{2} \leq 4 M_{0} M_{2}$. Does this result extend to vector-valued functions?
(Hint: From Taylor's theorem $f^{\prime}(x)=\frac{1}{2 h}(f(x+2 h)-f(x))+h f^{\prime \prime}(c)$ and therefore $\left|f^{\prime}\right| \leq h M_{2}+\frac{M_{0}}{h}$ for every $h>0$.)

Problem 18.4 Suppose that $\mathbf{f}:[0,1] \rightarrow \mathbb{R}^{n}$ is continuous and differentiable in $(0,1)$. Prove that there exists $c \in(0,1)$ such that

$$
|\mathbf{f}(1)-\mathbf{f}(0)| \leq\left|\mathbf{f}^{\prime}(c)\right| .
$$

Can " \leq " be replaced by "="?
(Hint: Consider $\phi:[0,1] \rightarrow \mathbb{R}$ given by $\phi(t)=(\mathbf{f}(1)-\mathbf{f}(0)) \cdot \mathbf{f}(t)$.)
Problem 18.5 Suppose that $U \subset \mathbb{R}^{n}$ is open and $\mathbf{f} \in C^{1}\left(U ; \mathbb{R}^{m}\right)$ satisfies

$$
|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{y})| \leq|\mathbf{x}-\mathbf{y}| \quad \text { for all } \mathbf{x}, \mathbf{y} \in U .
$$

Show that $\left\|\mathbf{f}^{\prime}(\mathbf{x})\right\| \leq 1$ for every $\mathbf{x} \in U$.

19 Inverse Function Theorem

Problem 19.1 1. Let $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $\mathbf{f}(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right)$. Show that \mathbf{f} is locally invertible near every point, but is not invertible.
2. Investigate whether the system

$$
\begin{aligned}
u(x, y, z) & =x+y z \\
v(x, y, z) & =2 e^{x} \sin z+y^{2} \\
w(x, y, z) & =x y z+y
\end{aligned}
$$

can be solved for x, y, z in terms of u, v, w near $(0,0,0)$.
3. Let $\mathbf{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be given by $\mathbf{g}(\mathbf{x})=L(\mathbf{x})+\mathbf{f}(\mathbf{x})$, where $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear isomorphism and $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is C^{1} and there is a constant M such that

$$
|\mathbf{f}(\mathbf{x})| \leq M|\mathbf{x}|^{2} \quad \text { for all } \mathbf{x} \in \mathbb{R}^{n}
$$

Show that \mathbf{g} is locally invertible near 0 .

Problem 19.2 Let $D \subset \mathbb{R}^{n}$ be open and let $\mathbf{f}: D \rightarrow \mathbb{R}^{n}$ be a C^{1} map with $\operatorname{det}\left(\mathbf{f}^{\prime}(\mathbf{x})\right) \neq 0$ for every $\mathbf{x} \in U$. Show that $\mathbf{f}[D]$ is an open subset of \mathbb{R}^{n}.

Problem 19.3 Denote $B=B_{1}(0) \subset \mathbb{R}^{n}$ and let $\mathbf{f} \in C^{1}\left(B ; \mathbb{R}^{n}\right)$. Show that there is $\delta>0$ such that if $\sup _{\mathbf{x} \in B}\left\|\mathbf{f}^{\prime}(\mathbf{x})-\mathrm{id}\right\|<\delta$ then \mathbf{f} is one-to-one on B.

Problem 19.4 Let $f \in C^{2}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ and assume that $f^{\prime}\left(\mathbf{x}_{0}\right)=0$ and $\left(f^{\prime \prime}\left(\mathbf{x}_{0}\right)\right)^{-1}$ exists. Show that there is an open set U containing \mathbf{x}_{0} such that $f^{\prime}(\mathbf{y}) \neq 0$ for all $\mathbf{y} \in U \backslash\left\{\mathbf{x}_{0}\right\}$.

Problem 19.5 Let $\mathbf{f} \in C^{1}\left(\mathbb{R}^{n} ; \mathbb{R}^{m}\right)$ and $\mathbf{x}_{0} \in \mathbb{R}^{n}$.

1. Suppose that $\mathbf{f}^{\prime}\left(\mathbf{x}_{0}\right)$ has rank m (i.e., $\mathbf{f}^{\prime}\left(\mathbf{x}_{0}\right)$ as a linear map is onto). Show that there is a whole neighborhood of $\mathbf{f}\left(\mathbf{x}_{0}\right)$ lying in the image of f.
2. Suppose that $\mathbf{f}^{\prime}\left(\mathbf{x}_{0}\right)$ is one-to-one. Show that \mathbf{f} is one-to-one on some neighborhood of \mathbf{x}_{0}.

Problem 19.6 Find (if it exists) the best linear approximation to the inverse function (if it exists) of the function $\mathbf{f}(x, y, z)=\left(x^{2}+y^{2}, x^{2}-y^{2}, z\right)$ near $(1,2,3)$.

Problem 19.7 Let $M=\left\{(x, y) \in \mathbb{R}^{2}: x y=0\right\}$. Is M a manifold? If so, of what dimension? If not, explain why not. Same questions for $M=$ $\left\{(x, y, z) \in \mathbb{R}^{3}: x y=y z=0\right\}$,
$M=\left\{(x, y, z) \in \mathbb{R}^{3}:\left((x-1)^{2}+y^{2}+z^{2}-1\right) \cdot\left((x+1)^{2}+y^{2}+z^{2}-1\right)=0\right\}$ and $M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}-1=0=x+y+z-1\right\}$. In all cases determine tangent and normal spaces $T_{a} M$ and $N_{a} M$.

Problem 19.8 Let $f \in C^{1}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$ and assume that $f\left(x_{0}, u_{0}\right)=0$ and $f_{x}\left(x_{0}, u_{0}\right)>0$. Prove the implicit function theorem from the intermediate value theorem. (Hint: it is sufficient and easier to look at rectangular, rather than circular, neighborhoods).

Problem 19.9 Suppose that $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is C^{1} and at $(0,0,0)$ all the partials of F are non-zero: $F_{x}(0,0,0) \neq 0, F_{y}(0,0,0) \neq 0$ and $F_{z}(0,0,0) \neq 0$. By the Implicit Function Theorem the equation $F(x, y, z)=0$ can be solved near $(0,0,0)$ for each variable in terms of the remaining two: $x=f(y, z)$, $y=g(x, z)$ and $z=h(x, y)$. Show that

$$
\left.\frac{\partial f}{\partial y} \cdot \frac{\partial g}{\partial z} \cdot \frac{\partial h}{\partial x}=-1 \quad \text { (equivalently, } \frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x}=-1\right)
$$

[^0]: ${ }^{1}$ This is an exercise in setting out a proof carefully. Be precise and to the point.

[^1]: ${ }^{2}$ We define

 $$
 \sup _{x \in[a, b]} f(x)=\sup \{y: y=f(x) \text { for some } x \in[a, b]\} .
 $$

[^2]: ${ }^{3}$ Show always means prove.
 ${ }^{4}$ Counterexamples should always be as simple as possible, in order to better illustrate the relevant features.

[^3]: 5 "show" always means "prove".

[^4]: ${ }^{6}$ We say $\lim _{x \rightarrow a^{-}} f(x)$ exists and equals c iff for each $\epsilon>0$ there exists a $\delta>0$ such that $|f(x)-c|<\epsilon$ whenever $a-\delta<x<a$. A similar definition applies to $\lim _{x \rightarrow a^{+}} f(x)$.

[^5]: ${ }^{7}$ That is, $\left(a_{i}, b_{i}\right) \cap\left(a_{j}, b_{j}\right)=\emptyset$ if $i \neq j$.

[^6]: ${ }^{8}$ That is, every open interval of the form $\left(a-\delta_{1}, a+\delta_{2}\right)$ for some $\delta_{1}, \delta_{2}>0$.

[^7]: ${ }^{10}$ As usual, it is easier to begin with a simpler case. Try the case of \mathbb{R}^{2}.

[^8]: ${ }^{11}$ We define continuity in the next Chapter. But you already know something about continuity from earlier courses.

[^9]: ${ }^{12}$ This is an important Result.
 ${ }^{13}$ This is an important Result, and is at the centre of the work in the Chapter on Differential Equations. We will discuss these ideas in detail there.

[^10]: ${ }^{14}$ Think of the case $X=[0,1], D=(0,1)$ and $Y=\mathbb{R}$.
 ${ }^{15}$ To say that \bar{f} is an extension of f means that $f(d)=\bar{f}(d)$ for all $d \in D$.

[^11]: ${ }^{16}$ In other words, there is exactly one such continuous function.

